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Abstract

U.S. inflation risk is non-symmetric and varies considerably over time. Monetary and fiscal
policies along with non-policy factors, such as unit labor costs, long-run interest rates, the
unemployment gap, and commodity prices, are key drivers of the inflation risk. Macroeco-
nomic predictors affect the long-run mean of inflation chiefly by influencing the shape and the
skewness of the predictive distribution of long-run inflation. Inflation stabilization requires
periodic revisions to the monetary and fiscal framework to counterbalance persistent shifts in
the inflation risk. Failing to offset the inflation risk led to the large upside inflation risk of the
1960s and the 1970s. Our findings suggest that the Phillips curve is nonlinear and its slope is
affected by policy and non-policy factors that have bearings on short-term volatility and risk
of inflation.

Keywords: TBC

JEL classification: TBC

∗We would like to thank Gianluca Beningo, François Gourio and the seminar participants at the Federal Reserve
Bank of Chicago. The views in this paper are solely those of the authors and should not be interpreted as reflecting
the views of the Federal Reserve Bank of Chicago or any other person associated with the Federal Reserve System.

†University of Warwick. andrea.depolis.17@mail.wbs.ac.uk
‡Federal Reserve Bank of Chicago & CEPR. leonardo.melosi@chi.frb.org
§University of Warwick & CEPR. ivan.petrella@wbs.ac.uk

andrea.depolis.17@mail.wbs.ac.uk
leonardo.melosi@chi.frb.org
ivan.petrella@wbs.ac.uk


1 Introduction

After being largely neglected for almost three decades, inflation has become again a major
concern for households, firms, and policymakers in many countries. It is not only the high inflation
rate to raise concerns but it is also the general perception that the economy may be entering into
a new regime where spikes in inflation become recurrent. Figure 1 lends support to this perception
by showing the thickening of the right tail of the subjective distribution of inflation outcomes from
the Survey of Professional Forecasters (SPF) and the Michigan Surveys of Consumers (MSC) in
the most recent period.1 In the past decade, the odds of low inflation or even deflation outcomes
were considerably high, posing new challenges to policymakers (Clarida 2020; Schnabel 2021) and
spurring a copious academic literature on the implications of recurrently binding lower-bound
constraints on nominal interest rate for monetary policy (Gust et al. 2017; Bernanke et al. 2019).
Despite the centrality of the topic, the economic literature studying the dynamics of inflation risks
and the macroeconomic conditions conducive to these dynamics is surprisingly thin.

In this paper, we estimate the time-varying mean, variance, and asymmetry of the long- and
short-run predictive distribution of U.S. core Personal Consumption Expenditure (PCE) inflation.
Having the full conditional distribution at each point in time also allows us to evaluate the balance
of risks to the inflation outlooks. We find that shifts in the balance of risk to inflation have been
large and frequent in the U.S. postwar period. Our model allows us to distinguish between short-
and long-run moments of inflation. The long-run mean and variance of inflation increase in the
1960s and in the 1970s and fall in the following decades. Similarly, long-run skewness remained
substantially positive from mid-1960s through the end of 1980s, implying a long-run balance of
risk clearly tilted towards the upside. Nevertheless, we find that long-run risk has been varying a
lot in the past three decades. In the second part of the sample, until 2020, the balance of risks
has become increasingly negative, driven by a swift decline in inflation skewness, which turned
negative during the mid-1990s.

Our results show that swings in the long-run risks to inflation are largely predicted by changes
in monetary and fiscal policy along with some non-policy factors, such as the structure of the
labor market and the level of the nominal interest rates. Short-run risks are influenced by the
unemployment gap, the monetary policy stance, and the international prices of commodities.
Similar factors influence the long-run and short-term volatility of inflation. While the stance of
monetary policy and the unemployment gap explain the lion share of the fluctuations in the first
and second moment of short-run inflation, the skewness is influenced primarily by monetary policy
and international commodity prices.

1Notice that the two surveys are rather different in their structure. Specifically, the MSC questionnaire focuses
more on the expected probability on increases in the price levels. The sample median and mean for the MSC are
about 3.5% and 4.5%, respectively. Therefore, we define left tail as the probability of inflation expectations below
1.5% for the SPF and below 3.5% for MSC, central corresponds to expectations in the [1.5%, 2.5%) interval for SPF
and [3.5%, 4.5%) for MSC, whereas the right tail is defined as expectations above 2.5% and 4.5% for SPF and MSC,
respectively.
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Figure 1: Inflation expectations
Note: The panels report Survey of Professional Forecasters (SPF, left) and University of Michigan’s Survey of
Consumers Finances’ interval forecasts from 2008. We define left tail as the probability of inflation expectations
below 1.5% for the SPF and below 3.5% for MSC, central corresponds to expectations in the [1.5%, 2.5%) interval
for SPF and [3.5%, 4.5%) for MSC, whereas the right tail is defined as expectations above 2.5% and 4.5% for SPF
and MSC, respectively. Gray shaded areas represent NBER recessions.

Non-policy factors, such as the level of the long-run interest rates and unit labor costs, have
played an important role in propping up long-run inflation volatility and in tilting the long-run
inflation risk to the upside in the 1960s and in the 1970s. The high levels of the interest rates
suggest that the central bank has to raise its interest rate considerably to stabilize inflation,
imposing large costs on the financial sector. Heightened unit labor costs captures persistent cost
pressures for firms stemming from the labor market.

The monetary and fiscal framework was ill-set and exacerbated the upside risk to inflation
through the end of 1970s. In the 1980s these policy factors contributed to lowering the variance
and the positive skewness of long-run inflation and, in the 1990s, caused the long-run inflation risk
to become tilted toward the negative side. The contribution of monetary and fiscal policies started
to reverse by the end of that decade and in the post-Great Recession recovery, when they again
tilted long-run inflation risk to the upside. In that period, the skewness remained on net negative
because of the low long-run real interest rate. This last finding is consistent with the notion that
in a low interest rate environment recurrent zero-lower-bound episodes lead to negatively skewed
inflation. Long-run monetary and fiscal factors partially offset this downward pressures on the
long-run skewness of inflation consistently with the recent structural study by Bianchi, Faccini,
and Melosi (2023).

The central tendency or location of the predictive distribution of long-run inflation is largely
unaffected by our predictors. This finding implies that changes in the long-run mean of inflation
are chiefly explained by movements in the risk driven by predictors. Consequently, those factors
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that predict changes in the shape and skewness of the distribution of long-run inflation are also
the drivers of the long-run mean of inflation.

Furthermore, we show that it is optimal for policymakers to review their policy frameworks from
time to time so as to offset the frequent swings in the balance of risk to inflation. Examples of such
frameworks include monetary policy make-up strategies – such as the average inflation targeting
or asymmetric strategies – that aim to counterbalance the deflationary risk due to proximity of
interest rates to their lower bound (e.g., Mertens and Williams 2019, Duarte et al. 2020, and
Bianchi et al. 2021). While in the 1960s and 1970s the monetary and fiscal framework exacerbates
the inflation risk on the upside, in the 1990s it pushes the balance of risk to inflation to the negative
territory. In the 2020s, monetary and fiscal factors offset the risk of deflation resulting chiefly from
the low interest rate environment. In regards to the short-term risk to inflation, monetary policy
has contributed less to it in the most recent period as the central bank appears to have become
more effective in adjusting the stance of monetary policy so as to counterbalance the effects of the
unemployment gap and international commodities prices on the short-term risk to inflation.

We draw three main implications from our results. First, there is no such a thing as a one-
size-fit-all policy framework; that is, a monetary policy strategy that remains optimal forever.
Second, fiscal policy plays an important role in shaping the long-run distribution of inflation and
its contribution to long-run inflation risk is almost invariably found to be correlated with that of
monetary policy. The latter result holds true both when monetary and fiscal policies contributed
to tilting the inflation risk to the upside in the 1970s and in the 2010s and when they contributed
to pushing the balance of risk to the negative territory in the 1960s and in the 1990s. Taken
together, these findings suggest the existence of monetary and fiscal regimes that evolve over time
in a fairly coordinated manner as some structural studies have found (Bianchi and Ilut 2017 and
Bianchi and Melosi 2017).

Third, we find evidence suggesting that the Phillips curve is nonlinear and its slope may depend
on monetary policy. The elasticity of the short-run inflation expectations to the unemployment
gap is time-varying in our model and crucially depends on short-run inflation volatility and on
the balance of risk. This elasticity is connected to the slope of the Phillips curve. Everything else
being equal, a more positively skewed distribution of inflation leads to a larger pass-through from
the labor market to short-term inflation expectations; that is, a steeper Phillips curve. Similar
effects are predicted if short-run volatility falls. In addition, a lower inflation volatility causes the
slope to become less sensitive to inflation risk.

Interestingly, the model predicts that the unemployment gap is one of the leading predictors of
short-run inflation uncertainty. A tight (loose) labor market is almost invariably associated with
higher (lower) uncertainty regarding inflation. Since higher (lower) uncertainty corresponds to a
steeper (flatter) Phillips curve, the model suggests a nonlinear link between expectations about
short-term inflation and the unemployment gap. Specifically, inflation expectations increase at a
faster pace as the unemployment gap becomes more negative (i.e., the labor market get tighter
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and tighter). Conversely, inflation expectations falls at a slower pace as the unemployment gap
becomes larger and larger.

The other leading predictor of inflation uncertainty is monetary policy, which is found to mostly
contribute to increasing inflation uncertainty in the 1960s and 1970s and to decreasing it in the
subsequent decades. This finding in combination with the positive relation between the slope of
the Phillips curve and inflation uncertainty suggests that monetary policy has been an important
factor behind the increase in the slope of the Phillips curve in the 1970s and its fall in the most
recent period.

Monetary policy also affects the time-varying slope of the Phillips curve by changing the balance
of risk of inflation. In the 1960s and in the 1970s, monetary policy contributed to increasing the
positive skewness of inflation whereas, in the subsequent decades, it has mostly contributed to
tilting the inflation risk to the negative side. Given the high uncertainty of inflation in the 1960s
and 1970s, the monetary-policy-led upside risk of inflation causes the Phillips curve to become
steeper.

The relevance of modeling inflation risk dates back to the seminal work of Engle (1982) on
time-varying inflation volatility. This has been proven to be a necessary feature of any model for
inflation forecasting to produce accurate point (Stock and Watson, 2007) and density forecasts (see,
e.g., Rossi, 2021). Only recently the attention has moved to the modelling of the whole density
of inflation outcomes (Manzan and Zerom, 2013, 2015; Lopez-Salido and Loria, 2020; Korobilis
et al., 2021). We follow Delle Monache et al. (2021) and introduce a parametric model for the
whole density of US core PCE. The model allows for asymmetric innovations, drawn from a Skew-t
distribution (see Arellano-Valle et al., 2005), and relies on the score-driven framework of Harvey
(2013) and Creal et al. (2013) to set up laws of motion for the parameters, as in Delle Monache and
Petrella (2017).2 Following Stock and Watson (2007), we allow time-varying moments to feature
trend components, mainly driven by structural policies, in line with Cogley and Sbordone (2008),
and cyclical variations, aimed at capturing transitory, short-lived factors that can temporarily
affect price dynamics (“cost-push” and demand forces, as in Gordon, 1970). We also allow a
number of short- and long-run predictors to drive the dynamics of the time-varying parameters in
order to assess the economic factors driving changes in the mean, the variance, and the downside
and upside risk of inflation.

We consider a broad set of predictors with the objective of testing some of the leading theories of
inflation. The long-run real interest rate may constrained monetary policy actions. For instance,
the low nominal interest rate environment of the last decade has increased the frequency and
duration of the zero lower bound (ZLB) spells, imparting a deflationary bias to inflation (e.g.,
negative skewness) according to theoretical macro models (Adam and Billi, 2007; Bianchi et al.,

2Score-driven dynamics provide, under some general conditions, optimal updates in the informational theoretic
sense (Blasques et al., 2014). It is important to notice that the specification considered by Blasques et al. (2014) is
a rather simple one, with only time-varying scale.
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Figure 2: Inflation distributions
Note: The left panel show US core PCE from 1965Q1 to 2020Q1. The right panel reports rolling Bai and Ng (2005)
test statistics, using windows of 3, 5 and 10 years, and the the 68 and 95% critical values. Gray shaded areas
represent NBER recessions.

2021). When long-run nominal interest rates are very high, the central bank ought to increase
the policy rate considerably to rein in inflation. But large monetary tightening puts stress on
the financial system, which central banks typically want to avoid. The central bank’s reluctance
to move interest rates high enough to control inflation may be a factor tilting inflation risk to
the upside. We consider Unit Labor Costs (ULC), capturing the role played by labor market
conditions in affecting the cost of hiring and retaining workers. This predictor is consistent with
the theory behind the Phillips Curve. The growth rate of money is shown by classical theories
to contribute to inflation (see, e.g., Estrella and Mishkin, 1997). We also include a measure of
fiscal stance in the US. The link between fiscal aggregates and inflation dynamics has been studied
by proponents of the fiscal theory of the price level (Sargent and Wallace, 1981; Leeper, 1991;
Sims, 1994; Woodford, 1994, 1995, 2001; Cochrane, 1998, 2001; Schmitt-Grohe and Uribe, 2000;
Bassetto, 2002; Reis, 2016; Bassetto and Sargent, 2020, among many others).

2 Price stability: some facts

Over the last 60 years, US core PCE inflation has experienced substantial variability. The great
inflation of the 1970s sees to be in stark contrast with the slow pace at which prices have grown in
the aftermath of the Great Financial Crisis. Figure 2 shows two interesting facts about inflation
data. In the left panel we split the sample around 2000 and report the mean, standard deviation
and skewness of the subsamples; for the second sample, the post-2000, we compute moments with
data until the end of 2022 to prevent the most recent data to dominate the statistics. The sample
average has more than halved, moving from about 4.5% to just below 2%; since the FED formally
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set a 2% inflation target in 2012, this value has further reduced to 1.6%.3 The values show a clear
break in the sample average, but also a dramatic shift in the the higher-order moments. Inflation
volatility has reduced two-fold, from about 2.2 to around 1.0, whereas sample skewness has changed
sign, moving from 0.8 to -0.95.4 We further investigate the change in inflation skewness in the
right panel of Figure 2. We compute Bai and Ng (2005) statistics for the sample skewness, along
with 68% (dotted) and 90% (dashed) critical values, computed with rolling windows of 3, 5 and
10 years. Results support evidence of time variations in sample skewness, with the time series of
the test statistics showing substantial variation over the sample, with several periods of significant
values.

The right panel of Figure 2 shows a sharp fall in inflation skewness towards the end of the
sample, pointing at excess downside risks in the inflation outlook. Since the turn of the century,
core inflation has consistently undershot the Fed’s 2% target. These results directly speak to the
evidence reported in Figure 1. The plots clearly show a “deflationary bias” in inflation expectations,
both for SPF and MSC, which lost their anchor at the target level of 2%, as observed by Yellen
(2015) and Reis (2021), and experiencing a surge in disagreement (see, e.g., Allayioti et al., 2023).5

This dynamics has started to quickly revert over the last few quarters, signalling increasing risks
to the upside.

3 Skewed inflation risk and monetary policy

The deflationary bias observed since the Great Financial Crisis has called for policy makers to
renew their commitment to maintain price stability. Over the last two years, two of the major
Central Banks, the Federal Reserve and the European Central Bank, have reviewed their approach
to keeping inflation close to a target level of about 2% over the medium horizon. The major
update coming out of such strategy reviews was a move from a symmetric inflation target, that
is the Central Banks reacted equally to above- or below-target inflation realizations (the so called
“bygones-be-bygones”), in favor of an asymmetric target, according to which, for example, the
policy maker will allow inflation to run higher than target after periods of below target levels (see,
e.g., FED, 2021; Reichlin et al., 2021).

Within this new policy environment, the optimal monetary policy response to inflation fluc-
tuation needs to take into account the evidence of asymmetric risks to the inflation outlook. We
consider an environment where the agents and the monetary authority track the predictive dis-
tribution of inflation, and therefore inflation risk, forming expectations considering the possible

3It is well established that before 2012 the FOMC informally targeted inflation around 2% (see, e.g., Bullard,
2018).

4To help the interpretation, we calibrate two Skew-Normal distributions (see, e.g., Mudholkar and Hutson, 2000)
to match the sample moments in the two subperiods. A change in skewness from 0.8 to -0.95 is equivalent to an
increase in the probability of observing realizations below the mode from 0.15 to 0.75.

5For example, SPF forecasts averaged around 1.75% over the 2000-2019 period.
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presence of non-Gaussianity and nonlinearities.6 We start with a simple case, in line with the
traditional Barro and Gordon (1983) framework, where the Central Bank action can affect current
inflation, via inflationary surprises, εt+1 = πt+1 − µt+1|t, defined as a deviation of current inflation
from the modal inflation forecast, µt|t−1. When the loss function is quadratic, it is optimal for the
Central Bank to anchor inflation expectations to the preannounced inflation target,

Etπt+1 = π∗. (1)

Let us now assume that inflation expectations are formed by means of a generic linear learning
rule, fµ

(
µt|t−1, εt

)
= bµµt|t−1 + aµεt.7 When innovations are Gaussian, Etπt+1 = µt+1|t and the

optimal level of inflation surprises can be expressed as

µt+1|t = π∗ = bµµt|t−1 + aµεt,

such that
εt =

1

aµ

(
π∗ − bµµt|t−1

)
,

and the optimal level of inflation surprises depends on i) the perceived persistence in inflation
expectations, and thus on the the deviation of future expected inflation from the optimal level,
absent any intervention (i.e. π∗ − bµµt|t−1) and ii) the speed at which inflation surprises are
incorporated into revisions of future expected inflation (regulated by the coefficient, aµ).

Let us now consider the situation where inflation risk is not symmetric and can be characterized
by a general class of asymmetric distribution with fixed scale, σ, and shape, ρ, parameter (Fechner,
1897).8 In this environment, the modal forecast (i.e., the most likely scenario) deviates from the
expected forecast, such that Etπt+1 = µt+1|t + g (σ, ρ, v), where g (·) denotes the impact of higher
order terms on expected inflation which tilts the mean forecast in the direction of the skewness.
In this environment the optimal inflation surprise that achieves the objective in Equation (1) sets

εt =
1

aµ

[
π∗ − bµµt|t−1 + g (σ, ρ, v)

]
, (2)

meaning that higher moments affect the optimal policy actions whereby the Central Bank optimal
inflation surprise needs to offset the perceived skewness in inflation risk, represented by the function
g(·). In a situation with a positive inflation risk (i.e. ρ > 0), the optimal response requires that

6In the next Section we will introduce a parsimonious model that can be considered as an approximation to a
more general Bayesian learning in an environment characterized by non-Gaussianity and nonlinearities (see Buccheri
et al., 2021).

7This simple autoregressive specification is consistent with the traditional Bayesian updating, which uses the
Kalman filter to update expectations in a linear-Guassian environment, in this case updates are proportional to the
prediction errors.

8Asymmetric densities have been widely used to communicate future inflation outlooks since the mid-1990s
(Wallis, 1999). See Wallis (2014) for an overview of the history of asymmetric (two-piece) distributions.
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Table 1: Müller and Watson (2018) long-run covariability

Location Dispersion Asymmetry

Sample Quantile Sample Quantile Sample Quantile

Low frequency

∆ULC 0.445
[0.027,0.719]

0.448
[0.028,0.721]

0.538
[0.184,0.813]

0.213
[−0.158,0.539]

0.273
[−0.103,0.593]

0.028
[−0.379,0.443]

FSD −0.133
[−0.511,0.210]

−0.157
[−0.524,0.209]

−0.200
[−0.529,0.158]

−0.030
[−0.413,0.337]

0.454
[0.082,0.714]

0.503
[0.115,0.782]

∆M3N 0.150
[−0.212,0.503]

0.161
[−0.209,0.524]

0.213
[−0.150,0.533]

−0.022
[−0.413,0.365]

−0.031
[−0.429,0.334]

−0.412
[−0.669,−0.001]

LRR 0.825
[0.539,0.931]

0.813
[0.513,0.924]

0.651
[0.301,0.866]

0.447
[0.013,0.724]

0.461
[0.036,0.772]

0.273
[−0.102,0.596]

Note: The table reports sample correlations (All frequency) and the long-run covariabilities of (Low frequency,
Müller and Watson, 2018) between predictors and inflation moments. We consider mean and the median as measures
of location, sample standard deviation and the interquantile range for the dispersion and (rescaled) sample and
quantile skewness for the asymmetry. 68% confidence intervals are reported in brackets. Values in bold indicate
significant results. ∆ULC: unit labor cost; FSD: federal surplus/deficit; M3N: M3 aggregate growth.

the policy maker sets the modal forecast below the inflation target to offset excess upside risk. In
a more general setting with time-varying risks, the optimal policy is achieved when

Etπt+1 = µt+1|t + g
(
σt+1|t, ρt+1|t, v

)
= π∗, (3)

making it optimal for the Central Bank to systematically set policies that allow the modal forecast
to overshoot (undershoot) the target when there is positive (negative) excess inflation risk.

4 Determinants of trend skewness in inflation

We run a preliminary analysis about the historical drivers of inflation dynamics, considering
some selected explanatory variables, related to the most prominent theories of inflation. We use
quarterly figures starting from 1965Q1 until 2020Q1. Inflation is measured as the annualized price
inflation rate of the Personal Consumption Expenditures (PCE), excluding food and energy prices
in the US.9 We consider changes in Unit Labor Costs, often embedded in most structural models to
study inflation dynamics as suggested by the theory of the Phillips curve. Fiscal policy is measured
as the ratio of primary surplus to the stock of the Federal debt. According to the fiscal theory of the
price level, if this ratio is negative, inflation has to rise to prevent debt from growing exponentially.
In that, values above the real average interest rate paid on the public debt characterize periods
when the fiscal authority is raising primary surplus at a pace that is commensurate to stabilize

9We prefer PCE over the Consumer Price Index (CPI) due to the relevance of the former in the policy decision
of the Federal Reserve.
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All frequencies Low-frequency

Figure 3: Skewness and the long-run real rate
Note: The left plot compare the long-run real rate and two non-parametric measures of time-varying skewness:
rolling sample skewness (green) and rolling quantile skewness at the 5% level (magenta). The right panel reports
the low frequency of the measures. Gray shaded areas represent NBER recessions.

the debt, so that the real value of government debt falls over time. We include the long-run real
interest rate as a direct measure of the cost of refinancing for firms and households, and a gauge
of the broad financial conditions; historical data are reconstructed using data from Liu and Wu
(2021). Monetary policy is considered via changes in the M3 monetary aggregate. The analysis
rests on assessing pairwise covariablity between the predictors and measures of location, dispersion
and asymmetry of inflation’s distribution, computed over rolling windows of 10 years. We consider
long-run covariability by means of the approach of Müller and Watson (2018). This methodology
captures long-run covariability by estimating the sample moments of cosine-weighted averages of
the data that smooth out short-run fluctuations. In this application we captured periodicities of
approximately 80 quarters, (20 years, q = 6). Table 1 shows the low-frequency covariabilities.
Interestingly, the variables related with different magnitudes to the different measures of inflation
moments. To visualize such comovements, Figure 3 reports the time-series plots of the long-run
real rate (black) and the non-parametric measures of inflation skewness, considering all frequencies
in the left panel, and only low-frequencies in the right panel. Whereas in the early sample the
comovement is not striking, starting from the second half of the 1980s the series follow similar
patterns, with a clear downward trend in inflation skewness, that seem to be anticipated by falling
real rates.
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5 Model specification

Inflation dynamics is commonly modelled via the New Keynesian Phillips Curve (NKPC),

πt = Et πt+1 + ψXt, (4)

which prescribes a linear relation between current inflation and a set of predictors, including
measures of slack. Whereas the NKPC implies a structural relation between inflation and the
predictors, already Gordon (1981) found Equation (4) to successfully fit the data (see also Atkeson
et al., 2001; Stock and Watson, 2008; Faust and Wright, 2013). We propose to go beyond the linear
relation implied by Equation (4) and set up a Phillips Curve-type model for the full distribution of
inflation, which includes a time-varying trend and stochastic volatility, in the spirit of Stock and
Watson (2007). Let πt = 400 log(pt/pt−1) be annualized, quarter-on-quarter (core) inflation,

πt = µt|t−1 + εt, εt ∼ Sktν(0, σ
2
t|t−1, ϱt|t−1), (5)

where the innovation εt is distributed as a Skew-t distribution (Arellano-Valle et al., 2005; Gómez
et al., 2007) with constant degrees of freedom ν and time-varying location µt, scale σt, and shape
ϱt parameters, estimated conditional to time t−1.10 The conditional log-likelihood function of the
observation at time t is:

ℓt = log p(πt|θ,Πt−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η

log
[
1 +

ηε2t
(1+ϱt)2σ2

t

]
, εt ≥ 0

log
[
1 +

ηε2t
(1−ϱt)2σ2

t

]
, εt < 0

, (6)

with η = 1
ν

being the inverse of the degrees of freedom, C(η) =
Γ

(
1+η
2η

)
√

π
η
Γ
(

1
2η

) , Γ(·) is the Gamma

function, and sgn(·) is the sign function. The vector θ collects the static parameters, and Πt−1

is the information set including past inflation and past parameter values, ft = (µt, σ
2
t, ϱt)

′. The
distribution of inflation realizations is positively (negatively) skewed for ϱ > 0 (ϱ < 0). This spec-
ification allows as special cases the symmetric Student-t distribution when ϱt = 0, Mudholkar and
Hutson (2000) epsilon-Skew-Gaussian for ν → ∞ and the Gaussian density when both conditions
hold. Thus, we allow for, but do not impose, asymmetric innovation terms.

To ensure σt > 0 and ϱt ∈ [−1, 1], we model δt = log(σt) and γt = arctanh(ϱt), such that
ft = (µt, δt, γt)

′ and

ft+1 = f̄t+1 + βXt. (7)

f̄t+1 = f̄t + κst, (8)

10Henceforth, we will simplify the notation “t|t− 1” into “t”.
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such that the parameters are linear functions of observed variables, Xt, plus a residual trend
component, f̄t, following a score-driven random walk specification; this nests the limiting case
where the long-run component is entirely in line with observable variables. The scaled score, st, is
defined as st = St∇t, where:

∇t =
∂ℓt
∂ft

∂ft
∂ft

, St = diag(It)
−1,

with ∇t being a vector of scores, namely the gradient of the likelihood function ℓt with respect to
the dynamic parameters, while the scaling matrix St is proportional to the Moore-Penrose pseudo-
inverse of the diagonal of the Information matrix, It = E [∇∇′]. In Appendix A we provide detailed
derivations for the score and a discussion of how current news about inflation (i.e., πt − µt) are
translated into updates of the conditional distribution of future inflation.

Basic Features of the Model. Equations (5) to (8) describes a model that build on the UCSV
model of Stock and Watson (2007) but considers a broader definition of risk to inflation, by allow-
ing for time-varying skewness in the predictive distribution of inflation.11 Whereas Equation (4)
assumes a linear relation for the expected value of inflation, an attractive feature of the Skew-t
distribution is that both mean and variance are non-linear functions of the shape of the entire
distribution. Specifically, one can show that:

E(πt|Πt−1) = µt + g(η)σtϱt, g(η) =
4C(η)
1− η

, (9)

V ar(πt|Πt−1) = σ2
t

(
1

1− 2η
+ h(η)ϱ2t

)
, h(η) =

3

1− 2η
− g(η)2. (10)

Both equations include a part equal to the mean and variance of a standard Student-t distribution,
µt and σ2

t

1−2η
respectively, plus non-linear functions of the shape parameter. A positive asymmetry

coefficient triggers a positive correction of the location parameter, so that the mean of the distri-
bution lies right of the mode, implying that the chance of observing values greater than the modal
one is greater than that of observing smaller values; the converse is true for values of ϱt < 0. It is
important to notice that developments of the asymmetry parameters are magnified by larger values
of σt for the expected value, which is always positively affected by shifts of the shape parameter
(i.e. ∂E(yt|Yt−1)

∂ϱt
> 0,∀ϱt, η). Similarly, an increase of asymmetry is associated with an increase in the

variance when the distribution is positively skewed (i.e. for ϱt > 0), and a decrease in the variance
when the distribution is negatively skewed (i.e. for ϱt < 0).12 Therefore, procyclical variations of
the skewness are reflected into a time-varying correlation between mean and volatility.

11Notice that Stock and Watson (2007) is a parameter-driven model, contrary to our choice, that falls in the
category of the observation-driven; see Cox (1981).

12In fact, ∂V ar(yt|Yt−1)
∂ϱt

= 2h(η)σ2
t ϱt, and since h(η) > 0 for ν > 3, the shift in the variance will be of the same

sign as the level of the shape parameter (thus of the same sign to the level of the conditional skewness).
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Estimation. The parameters of the model and the associated conditional distribution of inflation
are estimated using Bayesian methods. Loadings on the score component are Gamma distributed,
with mean 0.1 and variance 0.005. This choice ensures that the filter is invertible (Blasques et al.,
2022), that is, it (a) reduces the possibility of overshooting in the direction of the (local) optimum,
and (b) assumes conservative views on parameters time variation.13 We assume Normal priors
for the loadings associated to the predictors, with means centered around zero, and standard
deviations being drawn from half-Cauchy distributions, in the spirit of the Hosre-shoe shrinkage
prior (Carvalho et al., 2010). Lastly, we assume an inverse gamma prior for η. We set up an
adaptive Random-Walk Metropolis-Hastings algorithm (ARWMH, Haario et al., 1999). Credible
sets for both static and time-varying parameters are obtained from the empirical distribution
functions arising from the resampling. See Delle Monache et al. (2021) for a detailed discussion.

6 Short- and long-run drivers of inflation risk

We start from the evidence in Table 1 and consider two broad sets of predictors: variable that
predict long-run movements in inflation, such as the low-frequency components -computed in the
previous Section- of changes in Unit Labor Costs (∆UCL), Federal Surplus/Deficit (FSD), change
in money supply (∆M3N) and the Long-term Rate (LRR), and variables that relate to cyclical
variations in the moments of inflation such as the unemployment gap (UGP), the FFR/2y-rate
spread (MPS),14 the short-run component (e.g., the cyclical part around the low-frequency com-
ponent) of changes in Unit Labor Costs (∆UCL), International Commodity Price (ICI) and Real
Exchange Rate (RER). Figure 4 reports the time-varying moments of the conditional distribution
of inflation, with full moment being in blue, while long-run component are reported in red. The
time-varying mean matches the well-documented narrative for trend inflation (see, e.g., Stock and
Watson, 2016), which started to increase in the mid-1960s and then sluggishly fell starting from the
early 1980s through the mid-1990s when it stabilized around 2 %. Following the Great Recession,
trend inflation crept down and remained below 2% for an entire decade. In the pandemic, trend
inflation soared considerably, reaching values unseen since the early 1980s.

Inflation volatility was heightened in the 1970s and peaked twice between the mid 1970s and mid
1980s. In the 1980s volatility started its decline until it reached extremely low value in the 1990s
and in the first half of the 2000s, consistent with the Great Moderation narrative of McConnell
and Perez-Quiros (2000) and Stock and Watson (2002). In the following decade, volatility inflation

13We further enforce the following condition to hold via a rejection step:

1

T

T∑
t=1

log

∣∣∣∣I +K
∂st
∂f ′

t

(θ)

∣∣∣∣ < 0.

14The FFR/2y-rate spread is an indicator of the monetary policy stance. In our sample it is also strongly
correlated with the short-run component of the real rate.
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Figure 4: Time-varying moments with predictors
Note: Moments of the conditional distribution of inflation, in blue, and associated long-run components, in red.
Shadings around the curve report the 68-90% credible sets. NBER recessions are shaded in gray.

increased moderately and experienced a discrete increase in the pandemic period at the end of our
sample.

Let us turn our attention to the skewness on the right panel of Figure 4. Skewness follows
a fascinating pattern with three distinct phases: the early 1960s, the 1970s-1980s, and the most
recent period. The distribution of inflation transitioned from being tilted to the left to being tilted
to the right in the mid 1960s. The risk of inflation remained skewed to the upside through the
end of the 1980s. From the beginning of 1990s through the end of the sample, our estimated
distribution of inflation was tilted to the left, suggesting that inflation have chiefly surprised to
the downside in the most recent period.

To better understand the impact of predictors in shaping the moments of inflation outlook,
Figure 5 reports a decomposition of the models’ parameters, µt, γt and δt, into what is attributed
to each predictor and, for the long-run components a part reflecting the endogenous update driven
by past information (i.e. the score component). Swings in the long-run risks to inflation are largely
predicted by changes in monetary and fiscal policy along with some non-policy factors, such as
the structure of the labor market and the level of the nominal interest rates. Short-run risks are
influenced by the unemployment gap, the monetary policy stance, and the international prices of
commodities. Similar factors influence the long-run and short-term volatility of inflation. While
the stance of monetary policy and the unemployment gap explain the lion share of the fluctuations
in the first and second moment of short-run inflation, the dynamics of short-run inflation skewness
is influenced primarily by monetary policy and international commodity prices.

Non-policy factors, such as the level of the long-run interest rates and unit labor costs, have
played an important role in propping up long-run inflation volatility and in tilting the long-run
inflation risk to the upside in the 1960s and in the 1970s. The high levels of the interest rates
suggest that the central bank has to raise its interest rate considerably to stabilize inflation,
imposing large costs on the financial sector. Heightened unit labor costs captures persistent cost
pressures for firms stemming from the labor market.
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Figure 5: Time-varying parameter decomposition
Note: The plots report the decomposition of the unrestricted parameters into a score-driven component (blue) and
predictor-specific contributions. Top panels report the decompositions of short-run parameters. Bottom panels
plots long-run parameters. Gray shaded areas represent NBER recessions. ∆ ULC, changes in unit labor costs;
FSD, fiscal surplus/deficit; ∆M3N, money growth; LRR, long-run real rate; UNG, unemployment gap; MPS,
monetary policy stance; ICI, international commodity index; RER, real exchange rate.

The monetary and fiscal framework exacerbated the upside risk to inflation due to non-policy
factors through the end of 1970s. In the 1980s these policy factors contributed to lowering the
variance and the positive skewness of long-run inflation and, in the 1990s, caused the long-run
inflation risk to become tilted toward the negative side. The contribution of monetary and fiscal
policies started to reverse by the end of that decade and in the post-Great Recession recovery,
when they again tilted long-run inflation risk to the upside. In that period, the skewness remained
on net negative because of the low long-run real interest rate. This last finding is consistent with
the notion that in a low interest rate environment recurrent zero-lower-bound episodes lead to
negatively skewed inflation (Adam and Billi 2007 and Nakov 2008). Long-run monetary and fiscal
factors partially offset this downward pressures on the long-run skewness of inflation consistently
with the recent structural study by Bianchi, Faccini, and Melosi (2023).

Among the short-run predictors, the unemployment gap and the monetary policy stance drive
most of the cyclical variation. Phillips curve relations emerge in the dynamics of the location as
periods when the unemployment rate is above the NAIRU depress the level of inflation, greatly
reducing the cyclical variability of the predictive densities.
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Figure 6: Short-run elasticities with respect to Unemployment Gap
Note: The left panel reports the Phillips Curve slope as a function of the levels of asymmetry (y-axis) and scale
(x-axis); slopes values are reported as level curves. The right panel shows the time series plot of the PC slope
against the unemployment gap. Gray shaded areas represent NBER recessions.

Dynamic response to predictors and the slope of the Phillips curve. Within this specifi-
cation of the model, γt+1 = ln(σt+1) and δt+1 = arctanh(ϱt+1) are linear functions of the exogenous
predictors. As a consequence, these predictors will shape the distribution of expected inflation,
depending on the current value of the distribution’s parameters. Given Equation (9), we can
compute the elasticities of expected value and variance to changes in the generic predictor xt:

∂Et (πt+1)

∂xt
= βµx + g (η)

[
ϱt+1

∂σt+1

∂γt+1

βγx + σt+1
∂ϱt+1

∂δt+1

βδx

]
. (11)

This coefficient varies over time and can potentially change sign, being it a function of ϱt+1. Thus,
for example, in periods of positively skewed inflation (e.g., the 1970s), average inflation could
have responded to developments in some predictors rather then others, whilst being less affected
by the same predictors in periods characterized by symmetric or negatively skewed distributions.
Interestingly, if we interpret the correlation between current slack and expected inflation as the
“slope of the Phillips Curve”, this can potentially be time-varying, being a function of volatility
and skewness of the conditional distribution of inflation.15

The right panel of Figure 6 reports the dynamic response of the conditional mean to the
unemployment gap. The figure can be interpreted as the time-varying slope of a New Keynesian
Phillips curve. In the left panel, we report the estimated volatility (horizontal axis) and skewness

15In as similar fashion, from Equation (10), we can derive

∂V art (πt+1)

∂xt
=

(
1

1− 2η
+ h (η) ϱ2t+1

)
∂σ2

t+1

∂γt+1
βσx + σ2

t+1h (η)
∂ϱ2t+1

∂δt+1
βδx.
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(vertical axis) and the estimated Phillips curve’s slope – the black dashed lines in the graph.
Looking at how the slope of the Phillips curve (the black dashed line) is affected by the skewness

only if the inflation volatility is sufficiently large. In the 1970s and 1980s (the red and blue lines),
the slope of the Phillips curve was large because the volatility of inflation was elevated and,
concomitantly, inflation skewness was at its highest levels. In the subsequent decades, the sharp
fall in inflation volatility implies that changes in the skewness have considerably less impact on the
slope of the Phillips curve. Note how the black dashed lines bend upward as inflation volatility on
the horizontal axis is lowered.16

To sum up, there are two main takeaways from this analysis of the Phillips curve’s slope.
First, the slope of the Phillips curve depends on time-varying inflation volatility. Thus, by raising
inflation volatility, the pandemic period has indeed steepened the curve.

Second, we find suggestive evidence that the Phillips curve is not an exploitable relation for
policymakers. To the extent that sound monetary policy lowers the volatility of inflation, the slope
of the Phillips curve reflects the effectiveness of a country’s monetary framework.

7 Balance of risk and policy counterfactuals

In Section 3, we restricted out example to a simple quadratic loss function (Equation (1)) for
its appealing for its properties. Here, following Kilian and Manganelli (2007, 2008), we depart
from this assumption and assume that the Central Bank defines its loss in terms of upside and
downside risk (UR (πt+1) and DR (πt+1), respectively) with respect to an inflation target, π∗:

L (πt+1) = {aEt [DR (πt+1)] + (1− a)Et [UR (πt+1)]}

with a ∈ [0, 1]. From the first order conditions it follows that the optimal policy consists of
balancing upside and downside risks:

−a∂Et [DR (πt+1)]

∂πt
= (1− a)

∂Et [UR (πt+1)]

∂πt
, (12)

so that inflation surprises perfectly offsets expected losses of overshooting or undershooting the
target; these costs can be generically defined by the upside and downside risk.

Assuming the policy maker weight equally upside and downside deviations (a = 1
2
),

Et [DR (πt+1)] =

∫ π∗

−∞
(π∗ − πt+1)

2 dFπ and Et [UR (πt+1)] =

∫ ∞

π∗
(πt+1 − π∗)2 dFπ, (13)

16Evidence of the flattening of the New Keynesian Phillips curve is shown by Galí and Gambetti (2019), Stock
and Watson (2020), and Del Negro et al. (2020) among others. Our model suggests that the extremely low volatility
of inflation caused the flattening of the Phillips curve in the pre-Pandemic period.
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Figure 7: Balance of risk
Note: The panel reports the estimated upside- (blue) and downside-risk (red) components (defined in Equation (13)),
and the corresponding balance of risks (black). Gray shaded areas represent NBER recessions.

where Fπ denotes the predictive distribution of inflation, summarizing inflation risk. The optimal
policy requires the Central Bank to set∫ π∗

−∞
(π∗ − πt+1) dFπ =

∫ ∞

π∗
(πt+1 − π∗) dFπ (14)

which implies the Central Bank’s expectations of positive and negative deviations from the target
to be, ex-ante, equal in magnitude. When the predictive distribution of inflation is symmetric, this
is achieved by setting expected inflation to the expected modal value. Conversely, when inflation
risk is skewed, the optimality condition (Equation (14)) implies that larger deviations expected on
the side of the skewness are – partially – offset by tilting the modal value in the opposite direction
of the skew of the distribution. For instance, a positively skewed risk in inflation requires the
Central Bank to target a mode below the target, in order to compensate for the higher chance of
positive prediction, on average. The availability of full distributions for inflation outcomes allows
us to evaluate the balance of risk over time. We set the inflation target, π∗, to 2% and compute
the measures described in Equation (14). We report the balance of risk in Figure 7.

The Figure clearly shows that the balance of risks has been massively tilted towards the upside
across all the 1970s, but has steadily reversed since the Volker disinflation. Downside risks to
inflation took over in the post-Great Financial Crisis. Over the last few quarters, we estimate upside
risks of magnitudes similar to those experienced in the early part of the sample. Decomposing the
balance of risk over the long- and short-run components highlights a clear predominance of long-
run risks. Nontheless, short-run risk were higher during the 1970s, but have significantly flattened
ever-since, suggesting that the depressed inflationary environment that has characterized the last
10 years is the result of “structural” imbalances rather than transitory shocks.
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Figure 8: Balance of risk, counterfactuals
Note: The panels report the median difference between the counterfactual and the actual (see Figure 7) balances of
risks. The left panel assumes a scenario in which the long-run real rate does not move into negative territory, but
hits a hard floor at zero. On the right, the scenario assumes a muted fiscal response over the last 20 years. Bands
represent 90% credible bands. Gray shaded areas represent NBER recessions.

Counterfactuals. In addition to evaluate the balance of risk, the inclusion of explanatory vari-
ables and the flexibility of the model allows us to draw couterfactual balances of risk. Specifically,
this tool is suited to aid policy makers with the assessment of the effect of future policies on the
balance of risk, based on historical correlations. In Figure 8 we report the difference between
counterfactual balances of risks and the actual estimate in Figure 7. In the left panel, we assume
that the long-run real rate does not move into negative territory, but hits a hard floor at zero. The
result highlight how depressed real rates generate downside risks to inflation. That is, the coun-
terfactual balance of risk appears less tilted towards the downside, highlighting the importance of
falling real rates, which constraint the action of monetary policy from below. In the right panel
we evaluate a counterfactual balance of risks assuming fiscal policy would remain muted since the
turn of the century. The result show that the fiscal expansion in the aftermath of Great Financial
Crisis under the Obama administration has had an inflationary effect, that is it generated risks
towards the upside. Notably, Figure 8 shows how the fiscal stance might have played an important
role in mitigating the downward bias imposed by long spells of nominal rates close to their effective
lower bound.

8 Concluding remarks

We have estimated a model of inflation where innovations distribute as a Skew-t distribution.
This model allows us to track changes in the mean, variance, and asymmetry of the predictive
distribution of inflation over time. Furthermore, we can expand the model to study what macroe-
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conomic factors help predict changes in these moments at different horizons.
We find that non-policy factors, such as unit labor costs, long-run real interest rates, the

unemployment gap, and commodity prices, are key drivers of inflation risks. Failing to offset
inflation in the 1960s and in 1970s led to a large and persistent increase upside risk of inflation.

20



A Score-driven framework

Assume that the variable yt is generated by the observation density D(θ, ft), with θ collecting
the static parameters of the distribution. The score-driven setting postulates the dynamics of the
time-varying parameters, ft, being:

ft+1 = ϖ +

p−1∑
i=0

αist−i +

q−1∑
j=0

βjft−j, (15)

which we refer to as GAS(p, q) dynamics. The scaled score st is a non-linear function of past
observations and past parameters’ values. For ℓt = logD(θ, ft), we define:

st = St∇t, ∇t =
∂ℓt
∂ft
, St = I−1

t = −E
(

∂2ℓt
∂ft∂f ′

t

)−1

,

where ∇t corresponds to the gradient vector of the log-likelihood function, ℓt, and the scaling
matrix St−1 is proportional to the square-root generalized inverse of the Information matrix It−1.
Within this framework, the parameters are updated in the direction of the steepest ascent, in order
to maximize the local fit of the model.

A.1 Model’s specifics

Given the log-likelihood in Equation (6), the elements of the gradient ∇t, with respect to
location, squared scale and asymmetry, are:

∂ℓt
∂µt

= 1
σ2
t
wtεt,

∂ℓt
∂σ2

t
= 1

2σ4
t
(wtε

2
t − σ2

t ),
∂ℓt
∂ϱt

= − 1
σ2
t

sgn(εt)
(1−sgn(εt)ϱt)

wtε
2
t , (16)

where wt =
(1+η)

(1−sgn(εt)ϱt)2+ηζ2t
and ζt denotes the scaled prediction error, ζt = εt

σt
. The associated

information matrix reads as follows:

It =


(1+η)

(1+3η)(1−ϱ2t )σ
2
t

0 − 4C(1+η)

σt(1−ϱ2t )(1+3η)

0 1
2(1+3η)σ4

t
0

− 4C(1+η)

σt(1−ϱ2t )(1+3η)
0 3(1+η)

(1−ϱ2t )(1+3η)

 . (17)

In order to ensure the scale σt to be positive and the shape ϱt to lie within the unit circle,
we apply time-invariant, invertible and twice differentiable “link functions” to these parameters.
In practice, we model γt = log(σt) and δt = arctanh(ϱt), such that the vector of time-varying
parameters becomes ft = (µt, γt, δt)

′. Moreover, we follow Lucas and Zhang (2016) in scaling the
score only using the diagonal elements of the information matrix. Therefore, the associated scaled
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score vector is

st = (J ′
tdiag(It)Jt)

−1J ′
t∇t =

 sµt

sγt

sδt

 = wtζt(1 + 3η)


(3σt(1−ϱ2t )−4sgn(εt)C(1+sgn(εt)ϱt)ζt)

(3−16C2)(1+η)

σ2
t (wζ2t −1)

wtζt

(4C(1−ϱ2t )−sgn(εt)σt(1+sgn(εt)ϱt)ζt)

(3−16C2)(1+η)

 , (18)

where Jt =
∂(µt,σ2

t ,ϱt)

∂(µt,γt,δt)′
is the Jacobian matrix associated to the link functions. Detailed deriva-

tions can be found in Delle Monache et al. (2021). Weights, wt, penalize extreme standardized
innovations depending on the thickness of the tails, as well as volatility and asymmetry estimated
conditional to time t− 1. This asymmetric treatment of the signal of the prediction error is more
pronounced as the skewness of the distribution grows larger (i.e., |ϱt| → 1).

Robustness to outliers Here we consider the limiting behaviour of the Skt scaled scores. We
show that for (standardized) forecast errors approaching positive (negative) infinity, the scaled
scores either converge to zero, implying a trimming of the outliers, or converge to a positive
(negative) constant, akin to Winsorizing extreme observations. Specifically,

lim
ζ→±∞

sµt = 0, (19)

lim
ζ→±∞

sσt =
1 + η

η

√
(1 + 3η)

2
, (20)

lim
ζ→±∞

sϱt = ∓1 + η

η

√
(1 + 3η)(1 + ϱt)

3(1 + η)(1− ϱt)
. (21)

In line with results for the t distribution, the scaled score for the location trims outliers, preventing
any update of the parameter. The limits of the scaled scores for the scale and shape parameter,
on the other hand, converge to constant factors. These are functions of the degrees of freedom
parameter, as well as the conditional asymmetry parameter at time t for the shape.

Unrestricted parameters’ scores Here we provide a proof of the equivalence between the the
score vector arising from the restriction imposed on the scale and shape parameters and that arising
by imposing constraints on the two-component specification. We will drop the time subscript for
the sake of clarity.

Proof. Let consider γ = log σ being the log-scale, it follows that σ = exp γ, and the gradient is

∂ℓ

∂γ
=

∂ℓ

∂σ2

∂σ2

∂γ
=

∂ℓ

∂σ2
2σ2.
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Let now consider the multiplicative two-component counterpart σ = σ̄σ̃, such that γ = log σ =

log σ̄ + log σ̃ = γ̄ + γ̃. The gradient with respect to the first component reads

∂ℓ

∂γ̄
=

∂ℓ

∂σ2

∂σ2

∂γ

∂γ

∂γ̄
=

∂ℓ

∂σ2
2σ2.

The same applies for the second component.

Proof. For the shape parameter ϱ = tanh δ, we model δ = arctanh ϱ and the gradient is

∂ℓ

∂δ
=
∂ℓ

∂ϱ

∂ϱ

∂δ
=
∂ℓ

∂ϱ
(1− ϱ2).

Consider the two-component counterpart δ = (δ̄+ δ̃), so that ϱ = tanh(δ̄+ δ̃), it is easy to see that
that

∂ℓ

∂δ̄
=
∂ℓ

∂ϱ

∂ϱ

∂δ

∂δ

∂δ̄
=
∂ℓ

∂ϱ
(1− ϱ2).

The same applies for the second component.
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B Additional figures
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All frequencies low-frequency

Figure 9: Variance vs. long-run predictors
Note: Variance measures refer to the right axes. The variance estimate used in this exercise is extracted from the
baseline specification, and corresponds to the long-run forecast of the moment (i.e., limh→∞V ar(πt+h|t)).
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All frequencies low-frequency

Figure 10: Skewness vs. long-run predictors
Note: Skewness measures refer to the right axes. The skewness estimate used in this exercise is extracted from the
baseline specification, and corresponds to the long-run forecast of the moment (i.e., limh→∞Skew(πt+h|t)).
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